SYNTHESIS OF 1-CHLOROPHOSPHIRENES IN THE COORDINATION SPHERE OF TUNGSTEN

Bernard Deschamps and François Mathey

Laboratoire CNRS-SNPE, 2-8 rue Henry Dunant, BP 28, 94320 Thiais, France

<u>Summary</u>: Upon treatment with $AlCl_3$, 1- β -chloroethylphosphirene P-W(CO)₅ complexes lose ethylene and yield the corresponding 1-chlorophosphirene complexes.

Apparently, the recently synthesized phosphirenium salts (I)¹⁻³ have not an "aromatic" behaviour⁴ probably because the $(3d-2p)\pi$ interaction between the phosphorus atom and the C=C double bond remains weak as in the isoelectronic silirenes⁵. However, the situation is entirely different for the still unknown phosphirenyl cations (II) in which a powerful $(3p-2p)\pi$ interaction might take place between the electron-deficient heteroatom and the double bond. In such a case, these cations would be the first genuine 2π -aromatic species containing phosphorus. In practice, the synthesis of such cations requires an access to 1-haloor 1-amino-phosphirenes (III). In this communication, we wish to describe a route to such compounds.

The synthesis starts from $[1-\beta-chloroethyl-3,4-dimethylphosphole] pentacarbonyltungsten <math>(\underline{1})^6$. According to a simplified procedure described elsewhere³, complex ($\underline{1}$) is heated with a mixture of dimethyl acetylenedicarboxylate and tolan or 3-hexyne, thus directly producing $[1-\beta-chloroethylphosphirene]$ pentacarbonyltungsten complexes ($\underline{2}$) and ($\underline{3}$) in good yields :

4595

The reaction with 3-hexyne is run in a sealed tube. The phosphirene complexes are purified by chromatography on silica gel with hexane-benzene 80:20 and characterized by n.m.r. spectroscopy[†]. The less stable 1- β -chloroethyl-2-phenylphosphirene complex (5) is made in two steps through the 7-phosphanorbornadiene complex (4) according to the classical catalytic procedure⁷:

The phosphanorbornadiene complex $(4)^{\dagger}$ and the phosphirene complex $(5)^{\dagger}$ are both purified by chromatography on silica gel respectively with benzene and hexane-benzene 80:20.

When allowed to react with one equivalent of anhydrous aluminium trichloride, the 1- β -chloroethylphosphirene complexes (2) and (3) readily lose ethylene to afford the corresponding 1-chlorophosphirene complexes (8) and (9) in good yields :

Complex (8)[†] is purified by chromatography with hexane-benzene 80:20. Complex (9)[†] is more sensitive toward hydrolysis and is purified by extraction of the crude reaction product with pentane. A similar reaction attempted with complex (5) gives a more complicated product which has not been identified yet. It must be stressed here that neither the 7-phosphanorbornadiene complex (4) nor the phosphole complex (1) lose ethylene upon treatment with AlCl₃. Thus, it is very likely that the driving force for the loss of ethylene in the transient cation (6) is the aromaticity of the complexed phosphirenyl cation (7). For the same reason, the P-Cl bond of complexes (8) and (9) has probably a strong ionic character (P[•]...cl[•]). This high ionicity is reflected in the various mass spectra of (8) which show prominent peaks corresponding to the complexed and uncomplexed phosphirenyl cations. The increase of the intracyclic ¹J(C-P) coupling constant when converting (3) into (9) also suggests an increase of the C-P bond order and hence, some aromaticity for (9). \dagger_{δ} + for downfield shifts, references internal Me₄Si or external 85% H₃PO₄. (2): m.p. 63°C; $\delta({}^{1}H)$ n.m.r. (CDCl₃) 2.41 [dt, ${}^{3}J(H-H) \sim 7.3$ Hz, ${}^{2}J(H-P)$ 1.5 Hz, CH₂P] and 3.43 p.p.m. $\left[\text{dt}, {}^{3}_{\text{J}}(\text{H-P}) \right]$ 13.4 Hz, CH₂Cl ; $\delta^{(13}_{\text{C}}$ n.m.r. (CD₂Cl₂) 41.24 $\left[\text{d}, {}^{1}_{\text{J}}(\text{C-P}) \sim 0.8 \text{ Hz} \right]$ CH₂P], 41.44 [d, ²J(C-P) 8.6 Hz, CH₂Cl], 196.91 [d, ²J(C-P) 8.5 Hz, cis CO], and 198.84 p.p.m. $[d, {}^{2}J(C-P) 30.5 \text{ Hz}, \text{ trans CO}]; \delta({}^{31}P) \text{ n.m.r. (CH}_{2}Cl_{2}) -162.5 \text{ p.p.m., } {}^{1}J({}^{31}P-{}^{183}W)$ 263.7 Hz ; i.r. (decalin), v(CO) 2070 m, 1983 w, and 1944 vs cm⁻¹. (3): $\delta({}^{13}C)$ n.m.r. (CD₂Cl₂) 12.82 [d, ${}^{3}J(C-P)$ 4.9 Hz, Me], 20.97 [d, ${}^{2}J(C-P)$ 6.1 Hz, Me-CH2], 41.23 [a, ¹J(C-P) 2.4 Hz, CH2P], 42.11 [a, ²J(C-P) 8.5 Hz, CH2C1], 133.77 [a, ¹J(C-P) 13.4 Hz, =C-P, 197.30 [d, ²J(C-P) 7.3 Hz, cis CO], and 199.42 p.p.m. [d, ²J(C-P) 29.3 Hz, trans CO]; $\delta({}^{31}P)$ n.m.r. (CH₂Cl₂) -163.3 p.p.m., ${}^{1}J({}^{31}P-{}^{183}W)$ 258.8 Hz; i.r. (decalin), v(CO) 2070 m, 1982 w, 1943 vs cm⁻¹. (4) : m.p. 96°C ; $\delta({}^{13}C)$ n.m.r. (CDCl₃) 15.51 [d, ${}^{3}J(C-P)$ 2.4 Hz, Me], 38.35 and 39.80 [2s, P-CH₂-CH₂Cl], 52.16 [s, OMe], 59.49 [d, ¹J(C-P) 19.5 Hz, CH-P], 138.52 [d, ²J(C-P) 15.9 Hz, сме], 145.10 [d, ² J (С-Р) 4.9 Hz, <u>С</u>-со₂ме], 164.57 [d, ³ J (С-Р) 3.7 Hz, со₂], 195.50 [d, 2 J(C-P) 7.3 Hz, cis CO], and 196.83 p.p.m. [d, 2 J(C-P) 26.9 Hz, trans CO]; $\delta(^{31}$ P) n.m.r. (toluene) +204.4 p.p.m., ${}^{1}J({}^{31}P-{}^{183}W)$ 239.3 Hz ; i.r. (decalin), ν (CO) 2070 m, 1985 w, 1945 vs cm^{-1} . $(5) : \delta(^{13}C) n.m.r. (CD_2Cl_2) 40.99 [d, ^1_J(C-P) 2.4 Hz, CH_2-P], 41.87 [d, ^2_J(C-P) 4.1 Hz, CH_2-P]$ CH₂Cl], 119.05 [d, ¹J(C-P) 8.5 Hz, =CH-P], 196.78 [d, ²J(C-P) 8.5 Hz, cis CO], and 198.93 p.p.m. [d, ${}^{2}_{J}(C-P)$ 31.7 Hz, trans CO]; $\delta({}^{31}P)$ n.m.r. (CH₂Cl₂) -157.4 p.p.m., ${}^{1}_{J}({}^{31}P-{}^{183}W)$ 268.6 Hz ; i.r. (decalin), v(co) 2072 m, 1983 w, 1947 vs cm⁻¹. (g) : m.p. 154°C ; δ(¹³C) n.m.r. (CD₂Cl₂) 143.20 [d, ¹J(C-P) 22 Hz, =C-P] and 195.91 p.p.m. $\left[d, {}^{2}_{J}(C-P) 9.8 \text{ Hz}, \text{ cis CO}\right]; \delta({}^{31}_{P}) \text{ n.m.r. } (CH_{2}Cl_{2}) -109.7 \text{ p.p.m.}, {}^{1}_{J}({}^{31}_{P} - {}^{183}_{W}) 327 \text{ Hz};$ i.r. (decalin), ν (CO) 2077 m, 1993 w, 1957 vs cm²⁻¹²; mass (E.I., 70 eV, ³⁵Cl, ¹⁸⁴W) m/z 428 (M-5CO, 11%), 209 (M-Cl-W(CO)₅, 100%) ; (C.I., CH₄⁺) m/z 533 (M-Cl, 5%), 209 (M-Cl-W(CO)₅, 100%); (C.I. NH₃⁺) m/z 533 (M-C1, 100%), 209 (M-C1-W(CO)₅, 24%). $(\underline{9}): \delta({}^{13}C) \text{ n.m.r.} (CD_2Cl_2) 12.43 [d, {}^{3}J(C-P) 3.7 \text{ Hz}, \text{ Me}], 20.97 [d, {}^{2}J(C-P) 3.7 \text{ Hz}, CH_2],$ 150.38 d, ¹J(C-P) 25.6 Hz, =C-P, and 196.33 p.p.m. d, ²J(C-P) 9.8 Hz, cis co; δ(³¹P) n.m.r. $(CH_{2}Cl_{2})$ -97.1 p.p.m., $\frac{1}{J}(\frac{31}{P}-\frac{183}{W})$ 317.4 Hz; i.r. (decalin), v(CO) 2078 m, 1993 w, 1953 vs cm^{-1} .

REFERENCES

- (1) K.S. Fongers, H. Hogeveen, and R.F. Kingma, Tetrahedron Lett. 1983, 24,643
- (2) R. Breslow and L.A. Deuring, Tetrahedron Lett. 1984, 25, 1345
- (3) A. Marinetti and F. Mathey, J. Am. Chem. Soc., 1985, 107, in the press.
- (4) This question is discussed in ref. 3 and in : F. Mathey and A. Marinetti, Bull. Soc. Chim. Belg. 1984, 93, 533
- (5) J.C. Barthelat, G. Trinquier, and G. Bertrand, J. Am. Chem. Soc. 1979, 101, 3785
- (6) The synthesis of this complex is described in : B. Deschamps and F. Mathey, Tetrahedron Lett. 1985, <u>26</u>, in the press
- (7) A. Marinetti and F. Mathey, Organometallics, 1984, 3, 456

(Received in France 5 July 1985)